The Dependence of Solution Uniqueness Classes of Boundary Value Problems for General Parabolic Systems on the Geometry of an Unbounded Domain
نویسنده
چکیده
General boundary value problems are considered for general parabolic (in the Douglas–Nirenberg–Solonnikov sense) systems. The dependence of solution uniqueness classes of these problems on the geometry of a nonbounded domain is established. The dependence of solution uniqueness classes of the first boundary value problem for a second-order parabolic equation in an unbounded domain on the domain geometry was considered in [2]. It was established there that the uniqueness class could be wider than the solution uniqueness class of the Cauchy problem for the above-mentioned equation. Analogous results were obtained in [2] by the method of barrier functions. In [3] O. Oleinik constructed examples of second-order parabolic equations in the exponentially narrowing domains for which the solution uniqueness class for the second boundary value problem is the same as the solution uniqueness class of the Cauchy problem although the solution uniqueness class in this domain is wider. Later, in [4] E. Landis showed that if the domain narrows with a sufficient quickness at |x| → ∞, then the solution uniqueness class for the second boundary value problem can be wider than that of the Cauchy problem. In [5] the author considered degenerating parabolic equations of second order and obtained analogous uniqueness theorems for general boundary value problems. This paper deals with general boundary value problems for general parabolic systems in unbounded domains. Such problems were studied in [6], where solvability conditions similar to the Shapiro-Lopatinski conditions for 1991 Mathematics Subject Classification. 35K50.
منابع مشابه
A MIXED PARABOLIC WITH A NON-LOCAL AND GLOBAL LINEAR CONDITIONS
Krein [1] mentioned that for each PD equation we have two extreme operators, one is the minimal in which solution and its derivatives on the boundary are zero, the other one is the maximal operator in which there is no prescribed boundary conditions. They claim it is not possible to have a related boundary value problem for an arbitrarily chosen operator in between. They have only considered lo...
متن کاملON SOLUTION OF A CLASS OF FUZZY BVPs
This paper investigates the existence and uniqueness of solutions to rst-order nonlinear boundary value problems (BVPs) involving fuzzy dif- ferential equations and two-point boundary conditions. Some sucient condi- tions are presented that guarantee the existence and uniqueness of solutions under the approach of Hukuhara dierentiability.
متن کاملImplementation of Sinc-Galerkin on Parabolic Inverse problem with unknown boundary condition
The determination of an unknown boundary condition, in a nonlinaer inverse diffusion problem is considered. For solving these ill-posed inverse problems, Galerkin method based on Sinc basis functions for space and time will be used. To solve the system of linear equation, a noise is imposed and Tikhonove regularization is applied. By using a sensor located at a point in the domain of $x$, say $...
متن کاملAn efficient method for the numerical solution of Helmholtz type general two point boundary value problems in ODEs
In this article, we propose and analyze a computational method for numerical solution of general two point boundary value problems. Method is tested on problems to ensure the computational eciency. We have compared numerical results with results obtained by other method in literature. We conclude that propose method is computationally ecient and eective.
متن کاملExistence of positive solution to a class of boundary value problems of fractional differential equations
This paper is devoted to the study of establishing sufficient conditions for existence and uniqueness of positive solution to a class of non-linear problems of fractional differential equations. The boundary conditions involved Riemann-Liouville fractional order derivative and integral. Further, the non-linear function $f$ contain fractional order derivative which produce extra complexity. Than...
متن کامل